
Discrete Mathematics: Combinatorics and Graph Theory

Exam 2 Solution

Instructions. Solve any 5 questions and state which 5 you would like graded. Write neatly and show your
work to receive full credit. You must sign the attendance sheet when returning your booklet. Good luck!

1. Answer and verify whether (b) and (c) define equivalence relations:

(a) How many relations are there on a set A with n elements?
First note that there are 2|A| subsets on a set with |A| elements. A relation R on a set A is
defined as R ⊆ A×A. By definition, |A×A| = n× n. Therefore there are 2n×n relations on A.

(b) Let A be the power set of S so thatA = P(S). Define the relationR onA as ∀ (a, b) ∈ A, (a, b) ∈ R
if a and b have the same cardinality. What are the equivalence classes when S = {1, 2, 3}?
(i) Reflexivity: For any set x ∈ P(S), |x| = |x|. Therefore R is reflexive.

(ii) Symmetry: For any two sets x, y ∈ P(S), if |x| = |y| then |y| = |x|. Therefore R is symmetric.

(iii) Transitivity: For any three sets x, y, z ∈ P(S), if |x| = |y| and |y| = |z| then |x| = |z|.
Therefore R is transitive.

Enumerate P(S) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}, the equivalence classes are:

[∅] = ∅, [{1}] = {{1}, {2}, {3}}, [{1, 2} = {{1, 2}, {1, 3}, {2, 3}}, [{1, 2, 3}] = {{1, 2, 3}}

(c) Let S = {p
q | p, q ∈ Z, q ̸= 0} denote the set of fractions and define relation R on S by (ac ,

b
d) ∈ R

iff ad = bc. What are the equivalence classes?

(i) Reflexivity: For any fraction a
b , ab = ba. Therefore (ab ,

a
b ) ∈ R and R is reflexive.

(ii) Symmetry: If (ab ,
b
c) ∈ R, then ad = bc ⇒ c = ad

b and d = bc
a ⇒ cd = ba and R is symmetric.

(iii) Transitivity: If (ab ,
c
d) ∈ R and ( cd ,

e
f ) ∈ R, then ad = bc and cf = de. Multiply the first

equation by f ⇒ adf = bcf . Note that cf = de ⇒ adf = bde. Divide by d (which is not 0)
to get af = be. Therefore (ab ,

e
f ) ∈ R and R is transitive.

The equivalence classes are the rational numbers:[
1

1

]
=

{
2

2
,
3

3
, · · · , k

k
, · · ·

}
,

[
1

2

]
=

{
2

4
,
3

6
, · · · , k

2k
, · · ·

}
, · · ·

Each vertex in the Stern-Brocot tree represents an equivalence class. The set of all the equivalence
classes is Q.

2. Find all congruence classes of solutions of the following congruences in the given modulus.

(a) 7x ≡ 20 (mod 62)
Since gcd(7, 62) = 1, we know there will be a unique solution. The multiplicitive inverse of 7 is
9 (mod 62). To see this, observe that 7 × 9 = 63 ≡ 1 (mod 62) ⇒ 7−1 ≡ 9 (mod 62). Multiply
both sides of the congruence by 9:

9× 7x = 9× 20 (mod 62)

Therefore x ≡ 180 ≡ (mod 62) which reduces to x ≡ 56 (mod 62).

(b) 6x ≡ 3 (mod 32)
The gcd(6, 32) = 2. Since 2 ∤ 3, there are no solutions.
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(c) 4x ≡ 6 (mod 10)
The gcd(4, 10) = 2. Since 2 | 6, we can reduce as follows:

2x ≡ 3 (mod 5)

Note that 2 × 4 ≡ 4 (mod 5) so x ≡ 4 (mod 5) is a solution. Converting back to congruence
classes modulo 10 yields the two solutions:

x ≡ 4 (mod 10) and x ≡ 9 (mod 10)

3. Consider the following:

(a) What are ϕ(16), ϕ(20), ϕ(31) and ϕ(36) where ϕ(n) is Euler’s totient function?

(i) ϕ(16) = 24 − 23 = 8

(ii) ϕ(20) = ϕ(4)× ϕ(5) = (22 − 2)× (5− 1) = 8

(iii) ϕ(31) = 31− 1 = 30

(iv) ϕ(36) = ϕ(4)× ϕ(9) = (22 − 2)× (32 − 3) = 2× 6 = 12

(b) Given that 881 is prime, simplify 101882 (mod 881) (Hint: use Fermat’s Little Theorem).

101882 = 101880 + 1012 ≡ 1× 1012 = 10201 ≡ 510 (mod 881)

(c) Find the multiplicitive inverses of 3, 5, 7, 9 and 15 modulo 26.
We seek an x for each number a such that ax ≡ 1 (mod 26).

3x ≡ 1 (mod 26) ⇒ 3−1 ≡ 9 (mod 26)

5x ≡ 1 (mod 26) ⇒ 5−1 ≡ 21 (mod 26)

7x ≡ 1 (mod 26) ⇒ 7−1 ≡ 15 (mod 26)

9x ≡ 1 (mod 26) ⇒ 9−1 ≡ 3 (mod 26)

15x ≡ 1 (mod 26) ⇒ 15−1 ≡ 7 (mod 26)

4. Find the smallest positive integer x such that:

x ≡ 5 (mod 6)

x ≡ 2 (mod 7)

x ≡ 3 (mod 11)

Set N1 = 7 × 11, N2 = 6 × 11 and N3 = 7 × 6 with N = 6 × 7 × 11 = 462. Writing out each term
requires factors of 3 and 4 so that x = 7× 11 + 3× 6× 11 + 4× 7× 6 ⇒ x ≡ 443 (mod 462).

5. Verify the following identities:

(a)

Bn(x) :=

n∑
k=0

(
n

k

)
xk = (1 + x)n

Recall the Binomial Theorem:

n∑
k=0

(
n

k

)
xn−kyk = (x+ y)n

Substitute 1 for the xn−k term and rename the variables to show the result

n∑
k=0

(
n

k

)
xk = (1 + x)n
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(b)

Bn(x) :=

n∑
k=0

(
n

k

)
xk = (1 + x)n

Expand the binomial coefficient and cancel terms:(
k + r − 1

k

)
=

(k + r − 1)!

k!(Sk + r − 1−Sk)!

=
(k + r − 1)!

k!(r − 1)!

=
(k + r − 1)× (k + r − 2)× · · · × (r)×XXXX(r − 1)×HH· · · × A1

k!× (XXXX(r − 1)×XXXX(r − 2)×HH· · · × A1)

=
(k + r − 1)× (k + r − 2)× · · · × (r)

k!

= (−1)k
(−r)× (−r − 1)× · · · × (−r − k + 1)

k!

= (−1)k
(
−r

k

)
(c) (

n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
Expand the RHS:(

n− 1

k

)
+

(
n− 1

k − 1

)
=

(n− 1)!

(n− A1− k + A1)!(k − 1)!
+

(n− 1)!

(n− 1− k)!k!

=
(n− 1)!

(n− k)!(k − 1)!
+

(n− 1)!

(n− k − 1)!k!

Express (k − 1)! as k/k! and (n− k − 1)! as (n− k)/(n− k)! to simplify the denominator:

=
k(n− 1)!

k!(n− k)!
+

(n− k)(n− 1)!

k!(n− k)!

=
k(n− 1)! + (n− k)(n− 1)!

k!(n− k)!

=
(Sk + n−Sk)(n− 1)!

k!(n− k)!

=
n(n− 1)!

k!(n− k)!

=
n!

k!(n− k)!

=

(
n

k

)
6. Derive a closed form expression for the number of surjective functions that exist from a set S1 to S2

where |S1| = x and |S2| = y.
First note that there are

(
y
i

)
ways of choosing i elements from the set S2 of y elements. Also note

that there are ix functions from a set of size x into a set of size i. We wish to consider only surjective
functions and so it is necessary to remove functions that only go into a subset of size y−1 in S2. There
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are
(

y
y−1

)
such subsets, and for each of them there are (y − 1)x functions. Keeping yx −

(
y

y−1

)
(y − 1)x

results in some functions that are removed more than once that go into a subset of size < y− 1. These
must be added back:

S(x, y) =

y∑
i=1

(−1)y−1

(
y

i

)
ix

7. Prove that the gcd(a, c) = gcd(b, c) = 1 if and only if gcd(ab, c) = 1.

(a) Consider the forward conditional if gcd(a, c) = gcd(b, c) = 1 then gcd(ab, c) = 1. By definition
1 | ab and 1 | c. We want to show that ∃x, y ∈ Z such that abx + cy = 1. Since the gcd(a, c) =
gcd(b, c) = 1, ∃k, l,m, n ∈ Z such that

ak + cl = 1, bm+ cn = 1

Multiply the two equations:

abkm+ ackn+ cblm+ ccln = 1

Factorize:
ab(km) + c(akn+ blm+ cln) = 1

Hence x = km, y = akn+ blm+ cln. This proves the forward conditional.

(b) Consider the backward conditional if gcd(ab, c) = 1 then gcd(a, c) = gcd(b, c) = 1. This implies
that ∃x, y ∈ Z such that

abx+ cy = 1

Rewrite as follows
a(bx) + cy = 1, b(ax) + cy = 1

to highlight that there exist integer solutions k, l,m, n to equations ak+ cl = 1, bm+ cn = 1. By
Bezout’s identity this implies that gcd(a, c) = gcd(b, c) = 1.
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